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In vitro screening for population variability in toxicity of pesticide-containing mixtures
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ABSTRACT

Population-based human in vitro models offer exceptional opportunities for evaluating
the potential hazard and mode of action of chemicals, as well as variability in  responses to toxic
msults among individuals . This study was designed to  test the hypothesis t hat comparative
population genomics with efficient in vitro experimental design can be used for evaluation of the
potential for hazard, mode of action, and the extent of population variability in responses to
chemical mixtures. We selected 146 lymphoblast cell lines from 4 ancestrally and geographically
diverse human populations based on the availability of genome sequence and basal RNA  -seq
data. Cells were exposed to two pesticide mixtures  -- an environmental surface water sample
comprised primarily of org anochlorine pesticides and a laboratory-prepared mixture of 36
currently used pesticides — in concentration response and evaluated for cytotoxicity. On average,
the two mixtures exhibited a similar range of in vitro cytotoxicity and showed considerable inter-
individual variability across screened cell lines. However, when in vitro-to-in vivo extrapolation
(IVIVE) coupled with reverse dosimetry was employed to convert the in vitro cytotoxic
concentrations to oral equivalent dose s and compared to the upper bound of predicted human
exposure, we found that a nominally more toxic chlorinated pesticide mixture would pose less
risk as compared to the current  use pesticide mixture. Multivariate genome -wide association
mapping revealed an association between the toxicity of current use pesticide mixture and a
polymorphism in rs1947825 in Cl70rf54. A genetic pathway analysis showed a significant
association between metabolism pathways and the cytotoxicity of the chlorinated pesticide
mixture. We conclude that a combination of in vifro human population-based screening followed
by dosimetric adjustment and comparative population genomics analyses enables quantitative
evaluation of human health hazard from complex environmental mixtures. Additionally, such an

approach yields testable hypotheses regarding potential toxicity mechanisms.
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INTRODUCTION

Pesticides are chemicals that are used to kill, repel, or control certain forms of plant or
animal life that are considered to be pests (Krieger, 2010). Adverse health effects of pesticides
can range from mild skin and mucous membrane irritation to more severe outcomes such as
neurotoxicity and cancer (Bassil et al., 2007; Rother, 2014; S anborn et al., 2007) . Moreover,
potential for adverse effects following exposure may be higher among relatively vulnerable
populations, including women, children, the elderly, the immune -compromised and the
malnourished (Jurewicz and Hanke, 2008; Perry et al., 2014). There are several challenges in the
evaluation of the human health hazard of pesticides. First, pesticides have va  riable modes of
action (MOA) dependent on use and activity, and are meant to be harmful and toxic to pests, but
not humans. Second, because they are widely used in agricultural and household settings, people
are frequently exposed to pesticide residues. Th ird, humans are typically exposed to mixtures of
pesticides, creating challenges in hazard evaluation (Feron et al., 1998; Manikkam et al., 2012).

While safety testing of the individual pesticides is conducted according to established
regulatory guidelines (Babut et al., 2013), evaluation of the toxicity of mixtures is less structured
(U.S. EPA, 2002). The cumulative risk assessment is conducted for mixtures of chemicals with
common mechanisms of toxicity, event hough data are usually available only for individual
chemicals. Indeed, current toxicity testing paradigms have been questioned for their failure to
consider commonly occurring co -exposures and the magnitude of human population variability
in response to chemicals (National Research Council, 2009).

Whole animal testing is difficult to employ for evaluating the hazards of  chemical

mixtures. In contrast, in vitro testing allow s greater flexibility, as chemicals can be  grouped

according to their effects on key biologic pathways or tested over a broad range of
concentrations to capture varied exposure scenarios in a rapid and inexpensive manner
3
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(Andersen and Krewski, 2009) . The resulting data could enable an informed and focused
approach to the problem of ass essing risk in human populations that are exposed to mixtures.
Furthermore, with an experimental in vifro design that represents a human population, we are
able to explore not only the hazard, but also its intrinsic variability across different concentration
ranges (Lock et al., 2012; O'Shea et al., 2011) . Such information would be valuable to inform
regulatory decisions that could mor ¢ fully protect public health and sensitive subpopulations
(Abdo et al,, 2015).

In this study, we addressed the hypothesis that comparative population genomics with
efficient in vitro experimental design can be used for evaluation of the potential for hazard, mode
of action, and the extent of population variability in responses to chemical mixtures. We
screened 146 lymphoblast cell lines (LCLs) from four  ancestrally and geographically diverse
populations with public ly available genotypes and sequencing data from the 1000 Genomes
Project (1000 Genomes Project Consortium, 2010). Cells were exposed to two pesticide mixtures
(an environmental sample, comprised primarily of a mixture of organochlorines extracted from a
passive surface water sampling device, and a mixture of 36 currently used pesticides) at 8
concentrations. Cell viability was evaluated in a 96 -well plate format. Cytotoxic response was
assessed using an effective concentration threshold of 10% (EC ), designed to be relevant to the
dose-response evaluation commonly used in quantitative risk assessment practice and to
meaningfully capture ranges of variation in response across individuals. Genom e-wide
association mapping and genetic association pathway analyses were performed to evaluate the
genetic determinants of susceptibility. Furthermore, in vitro -to-in-vivo extrapolation by reverse
pharmacokinetics was utilized to translate the in vitro concentrations to oral equivalents, which

were then compared to predicted human cumulative exposures.
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MATERIALS AND METHODS
Experimental Design

Cell lines. A set of 146 immortalized LCLs was acquired from Coriell Cell Repositories
(Camden, NJ). The 146 cell lines represent 4 ancestrally and geographically diverse populations
(Table 1) : Utah residents with Northern & European ancestry (CEU); Tuscan in Italy (TSI);
Yoruban in Ibadan, Nigeria (YRI); and British from England & Scotland (GBR). Cell lines were
chosen based on the availability of dense genotyping information (1000 Genomes Project
Consortium et al., 2012). Screening was conducted in two batches, and cell lines were randomly
divided into batches without regard to family structure , but with equal representation of
population and gend er. Cells were  cultured in RPMI 1640 media (Gibco, Carlsbad, CA)
supplemented with 15% fetal bovine serum (HyClone, South Logan, UT) and 1% penicillin -
streptomycin (Gibco) and cultured at 37°C with 5% CO ,. Media was changed every 3 days. Cell
count and viability were assessed once a day for five days for all cell lines using Cellometer
Auto T4 Plus (Nexcelom Bioscience, Lawrence, MA). Cells were grown to a concentration of up
to 10 ® cells/ml, volume of at least 100 ml, and viability of >85% before exposures. After
centrifugation, the cells were re -suspended in fresh media. Cells (100 pl containing 10 * cells)
were aliquoted to each well in a 96-well treatment plate (following the addition of the chemicals)
and mixed using the Biomek 3000 robo t. Plates were incubated for 24 h after treatment at 37°C
and 0.5% CO ,.To increase the robustness of the data and to evaluate reproducibility , each cell
line was seeded in at least two plates so that each compound would be screened in each cell line
on 2 or more plates.

Chemical Mixtures. Cells were exposed to two environmental chemical mixtures. F irst
1s an

mixture, referred to as “ chlorinated pesticide mixture” throughout the manuscript

2

environmental sample obtained from a universal passive sampling device deployed for 30 days
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in surface water next to a chlorinated pesticide storage facility . In this extract, 10 pesticides were
present in detectable quantities in the post  -collection labo ratory analysis ( see T able 2 for a
complete list of pesticide chemicals identified by mass spectrometry) . The s econd mixture,
referred to as “current use pesticide mixture”, was a laboratory-generated mixture of 36 currently
used pesticides with relative ¢ oncentrations selected to mimic fractional composition of the
pesticide exposures in E astern North Carolina ( Table 3). Stock solutions of each mixture were
further diluted with dimethyl sulfoxide (DMSQO) 8 -fold in 2 -log step -wise manner. Final
cumulative concentrations ranged from 0.032 to 370.4 uM for the current use pesticide mixture
and from 0.022 to 65.7 uM for the chlorinated pesticide mixture in 0.5% (vol/vol) DMSO. The
mixtures were aliquoted to 96 -well plate format using Biomek 3000 robot  (Beckman Coulter,
Inc., Brea CA). The negative control was DMSO at 0.5%; the positive control was tetra  -octyl
ammonium bromide at 46 uM.

Cytotoxicity profiling . The CellTiter -Glo Luminescent Cell Viability (Promega,
Madison, WI) assay was used to assess intracellul ar ATP concentration, a marker for
cytotoxicity, 40 h post treatment. Time points were selected based on previous experiments at the
National Institutes of Health Chemical Genomics Center  (Xia et al., 2008) . A ViewLux plate

reader (PerkinElmer, Shelton, CT) was used to detect luminescent intensity.

Data Processing

Cytotoxicity EC 1y estimation and outlier detection . Cytotoxicity data were normalized
relative to positive/negative controls as described elsewhere (Abdo, et al., 2015). We derived an
effective concentration 10™ percentile (EC 1) to provide a single cytotoxicity dose summary per

chemical and cell line. The derivation of EC;¢ was based on the logistic model:
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with , where 1s the observed normalized signal representing proportion
of surviving cells (which we term the “cytotoxicity value”),  is the log(concentration) for each
chemical, and 1s the limiting mean cytotoxicity value for the zero concentration. was
set to zero, to avoid difficulties in estimating the minimum cytotoxicity value for chemicals with
low cytotoxicity. An exception was made for chemicals in which the cytotoxicity value at the
highest concentration was higher than 0.4, as a very few  number of plates/chemicals did not
reliably reach maximum cytotoxicity. In those instances was set at the observed
cytotoxicity at the maximum concentration. Inspection of these data revealed good fits in such
instances. Although in principle should have been 1.0, a number of plates exhibited a drift
from this value, and thus the parameter was estimated from the data.

Fitting for the parameters proceeded by maximum likelihood using
numerical optimization in R v2.15. An automatic outlier detection algorithm was devised by
considering the impact of dropping each concentration value in succession, and removing those
values for which the maximum likelihood improved by a factor of 10 or more and refitting the
model using the non-outlying observations.

Normalizing for batch effects . Batch effects were evaluated by running principal
component analysis. EC 1o values were adjusted for batch effect using the ComBat method
(Johnson et al., 2007).

Concentration response for populations and individuals . For each pesticide mixture, the
three-parameter logistic regression described above in EC 1o estimation was fit to concentration -
response data for each cell line. The variation in the EC 1o estimates was used as illustrative of

population variation in true EC ¢ values, although additional sampling variation underlies each
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EC,o estimate. An overall logistic concentration -response curve was fit to the aggrega ted data
across all individuals (Figure 1).

Reproducibility and correlation between mixtures . Pearson and Spearman correlation
coefficients (r) between pairs of replicate plates were used to assess experimental reproducibility
and the correlation between the two mixtures. For this analysis, the two  replicate plates were
selected for each mixture and cell line pair.

Chemical/Mixture Specific Adjustment Factor (CSAF). Variability in response for each
mixture across the 146 cell lines was derived as the longest tail of the variability distribution (in
our case the ratio of the 50™ percentile to the 5™ percentile was greater than the ratio of the 95™
to the 50 ™ percentile) using the World Health Organization guidance for chemical -specific
adjustment factors (World Health Organization, 2005).

Chemical descriptors . Chemical descriptors were calculated using Dragon version 5.5
(Mauri et al., 2006) . Constant and near constant descriptors as well as highly correlated
descriptors were excluded and descriptor values were normalized on a scale from 0 to 1.

Differences in cytotoxicity across different populations. Analysis of Variance (ANOVA)
was performed to assess population differences in cytotoxicity between the four screened
populations for each mixture.

Genotypes. The primary source of genotypes was obtain ed as described in Abdo et al.
(2015). SNPs with a call rate below 99%, minor allele frequency ( MAF)<0.05, or Hardy—
Weinberg equilibrium p-value <1x10~ were excluded.

Multivariate Association Analysis (MAGWAS) . The MAGWAS analysis of covariance
model (Brown et al., 2012) was used for association mapping. The approach allows for use of the
full concentration -response profile, as opposed to a univariate summary (such as ECyp)asa

single response, with the advantage of robustness and power unde r a wide v ariety of association
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patterns. The model used for association for the Jjth individual and genotype i for the

chemical/SNP was:

2

where  is the vector of responses (across the eight concentrations) for the ;” individual having
genotype i, 1s the design matrix of covariates, including sex, indicator variables for

laboratory batch, and the first ten genotype principal components, and 1s the eight -vector of
parameters modeling the effects of genotype i on the response. The model assumes that the error
terms are multivariate normally distributed, with mean vector 0 and variance-covariance matrix
X, allowing for dependencies in the  observations. P-values were obtained using Pillai’s trace
(Pillai, 1955). Because this method makes use of asymptotic theory, markers with fewer than 20
individuals representing any genotype were removed, leaving 692,013 SNPs for analysis.

Estimation of C s using in vitro in vivo extrapolation  (IVIVE) and Monte Carlo
Simulation. Key determinants of steady -state pharmacokinetics were experimentally measured
for chemicals and published previously (Wetmore et al., 2012, Wetmore et al., submitted)
Briefly, plasma protein binding was measured using rapid equilibrium dialysis (Wetmore et al.,
2012) and the rate of hepatic metabolism of the parent compound was determined using the
substrate depletion approach (Rotroff et al., 2010; Wetmore, et al., 2012) . See flow chart for
these analyses in Supplemental Figure 1)

These data were then used to calculate chemical steady -state blood concentrations (C )
as previously described , with modification (Wetmore et al. 2012 |, Wetmore et al., submitted ).
The base equation used to calculate static C  is based on constant uptake of a daily oral dose and

factors in blood binding, hepatic clearance and non -metabolic renal clearance . The daily oral
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dose was setto 1 pg/kg/day to reflect ambient environmental exposures. A correlated Monte
Carlo approach wa s employed (Jamei et al., 2009)  using Simcyp (Simcyp v.1.3; Certara,
Sheffield, UK) to simulate variability across a population of 10,000 individuals equally
comprised of males and females, 20-50 years of age. A coefficient of variation of 30% was used
for intrinsic and renal clearance. The median, upper and lower fifth percentiles for the C were
obtained as output.

Calculation of oral equivalent dose values. In conventional use, pharma cokinetic
models are used to relate exposure concentrations to a blood or tissue concentration. This is
typically referred to as “forward dosimetry .” In contrast, the models can also be reversed to
relate blood or tissue concentrations to an exposure con centration, which 1s referred to as
“reverse dosimetry” (Tan et al., 2007). Based on the principal of reverse dosimetry, the median,

th - .
upper and lower 5 © percentiles for the C i were used as con version factors to generate oral

equivalent doses according to the following formula:

In the equation above, the oral equivalent dose value is lin p early related to the in virro EC,o and
mnversely related to Cy,. This equation is valid only for first -order metabolism that is expected at
ambient exposure levels. An oral equivalent value was generated for each chemical -cell line
combination and summed to provide a cumulative oral equivalent value for each cell line.
Predicted exposure limits.  Pesticide specific predicted exposure s were obtained as
previously detailed in  (Wambaugh et al., 2013) . The pesticide specific exposure limit was

available for 35 out of the 36 pesticides in the current -use pesticide mixtur e and for 6 out of 10

10
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pesticides in the chlorinated pesticide mixture. Missing values were replaced by the highest
exposure within each mixture. Then, a cumulative exposure was computed for each mixture from

the upper 95™ percentile (see flow chart in Supplemental Figure 2).

RESULTS
Cytotoxicity of pesticide mixtures in vitro

Screening was conducted in a 96 -well plate format using a robotic system to facilitate
reproducibility and throughput. The 146 cell lines were randomly assigned to two batches with
blocking to achieve balancing by sex and population. Each cell line was plated on two plates to
evaluate technical reproducibility and pesticide mixtures were added at 8 different concentrations
ranging from 0.032 to 370.4 uM for current use pesticide mixt ure, and from 0.022 to 65.7 uM
for chlorinated pesticide mixture. Positive and negative controls for cytotoxicity, as assessed by
intracellular ATP concentrations, were included on each plate. Normalization to the control for
each plate was performed as de scribed in the Materials and Methods section separately for each
cell line. EC 1¢s were derived, batch -corrected and averaged across replicate plates for each cell
line.

To visualize “individual” vs. “population” response to each pesticide mixture, we fit ted a
3-parametric logistic regression to each cell line’s concentration -response, as well a single
concentration-response curve for the entire population,  as illustrated in Figure 1 . Population
variability in cytotoxicity of each mixture is shown as a histogram of EC;, values. Both mixtures
demonstrated considerable inter  -individual variability in cytotoxicity . To evaluate the
reproducibility of the EC;o values, pair -wise correlations among  duplicate plate pairs were
calculated for each mixture . Highly significant correlations were observed for both mixtures

(p<0.0001). For current pesticides mixtures r[Pearson’s]=0.62 and p[Spearman]=0.55. For

11

EELI_0001422



O ~I O U W N e

A YY) U1 U1 U1 U1 U1 U1 U1 U1 OO s s s s B B B D D DWW W W WW W W W NN NDNDNDNDNDN R R R e e e e b e e
s W OWo-I U WNEF O WOWw-=-1I0UEWNEFE OWOWw--I"NnOUdWwNF OWOW-=-1IO0"NUWNEF OWOW--JNUu b whk- Ow

chlorinated pesticides mixture, 7[Pearson’s]=0.65 and p[Spearman]=0.56. Overall reproducibility
for both mixtures was also significant (p<0.0001) with r[Pearson’s]=0.62 and
p[Spearman]=0.54.

We found that both mean and median EC;¢ values for in vitro cytotoxicity, as well as the
range among cell lines tested, were not significantly different between the two mixtures (Figure
2). Using these data, the extent of population variation in in vifro cytotoxicity may be derived to
serve as a surrogate for cellular variation in the toxicodynamic relationship between systemically
available concentrations and toxic responses (Zeise et al., 2013). We calculated a toxicodynamic

q )

@79, analogous to a chemical -specific

variability factor for these human cell lines as 10
toxicodynamic uncertainty factor (UFd) for inter-individual variability (World Health
Organization, 2005), and found it to be around 3-fold for either mixture (Table 4).

Next, we evaluated the extent ofthe similarity of cytotoxic response s to the mixtures
across cell lines. Strong (significant even after removal of the three outlier cell lines) correlation
(r[Pearson]=0.53, p<0.0001; p[Spearman]=0.25, p<0.01) was observed between the mixtures,
illustrating appreciable degree of concordance in individual cell line responses (Figure 3a). There
were no suggestive patterns of population clustering in the correlation between the mixtures and
neither mixture exhibited significant differences among the populations tested (Supplemental
Figure 3). It is of note, however, that GBR cell lines were the most sensitive, while YRI cell lines
the least sensitive to  invifro cytotoxicity of these mixtures. Moreover, within -population
variability was greater for the current use pesticide mixture as compared to the chlorinated
pesticide mixture, especially when considering the range of the upper quartile to the lower
quartiles.

The finding of the significant concordance in responses to both mixtures is  of interest

because there 1s no individual chemical overlap (Tables 2 and 3) . These results may suggest

12
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potential shared mechanisms for cytotoxicity. To further explore chemical similarity among
compounds in each mixture, we performed principal components analysis using chemical
descriptors. We found that two mixtures overlap in their chemical descr iptor space (Figure 3b),
which may partially explain the correlation between two mixtures. While some of the individual
components in both mixtures are closely related isomers, no clustering of compounds based on

the known pesticidal mode of action (http://www irac-online.org/documents/moa-

classification/?ext=pdl) was observed.

We also compared the strength of the correlation between two mixtures to that of a pair -
wise comparison between any pair of compounds in another study that evaluated cytotoxicity of
179 diverse environmental compounds and drugs in a population of lymphoblast cell lines
(Abdo, et al., 2015) . The correlation between two mixtures tested in this study
(p[Spearman]=0.25) was comparable to the median correlation of a randomly chosen pair from
15931 possible combinations in the previous cytotoxicity experiment (Figure 3c).

In vitro -fo-in vive extrapolation of cytotoxicity of pesticide mixtures in a population-based
model to oral human equivalents and predicted human exposure levels

To conduct a comparative analysis of in vifro cytotoxicity measures of pesticide mixtures
with potential human exposures , we computed oral equivalent doses for both mixtures using the
reverse dosimetry approach (Wetmore, 2015). In vitro pharmacokinetic data (Wetmore et al.
2012, Wetmore et al., submitted ) were available for 31 of the 36 chemicals present in the current
use pesticide mixture, and for 4 of the 10 chemicals in the chlorinated pesticide mixture. In
comparison to 180 ToxCast Phase I chemicals similarly assessed for in vitro pharmacokinetics,
the C, values for the 31 current use pesticides had a similar distribution (a median C i <1 uM
and 95™ percentile =200 pM). Only two of the chemicals in the current use pesticide mixture had

very high C  values, ethalfluralin (350 uM) and flumetralin (277 uM), the rest were below 8

13
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uM. The distribution of the values for 4 compounds in the chlorinated pesticide mixture was
different, the maximum Cg value was 58.5 uM.

Because there is no standard approach for evaluation of pharmacokinetics of mixtures,
for the purposes of pharmacokinetic modeling in this study we assumed that pharmacokinetics of
each chemical will not be significantly ~ affected by the presence of other chemicals  in the
mixture. Given that cytotoxicity was measured across 146 individual cel 1lines, separate oral
equivalents were calculated for each individual based on the percentage of a given chemical in
the mixture (Tables 2 and 3) . Furthermore, because some chemicals in each mixture were
without in vitro pharmacokinetic parameters, oral equivalent doses were computed based on four
different scenarios (see Supplemental Figure 1 for the workflow). We substituted missing Css
values with either median or largest ( based on the most conservative simulation assu  ming no
hepatic clearance, high blood binding and only renal clearance, referred to as a “worst -case-
scenario”) C 4 value of other chemicals in the mixture. In addition, oral equivalents were
calculated with and without weighting of the EC,, by the percentage of chemical in the mixture.

The C values were derived using the Simcyp software with Monte Carlo simulations to
account for the population variability in pharmacokinetics  in healthy individuals (Northern
European, 20-50 years of age, equally mixed sex). To be reasonably conservative, the upper 95
percentile values  from a series 10 simulation (1000 individuals each for estimating
pharmacokinetics variability) per trial were used to determine the oral equivalents. This analysis
showed that even though invitro  cytotoxicity of the mixtures, i.e., EC 1o values, was
quantitatively (with respect to the mean, median or distribution) indistinguishable (Figure 2),
highly significant differences (p<0.01 or greater) arise when oral equivalents are computed from
invitro ECyy values (Figure 4). The chlorinated pesticide mixture was predicted as about an

order of magnitude more toxic (p<<0.001) than the current use pesticide mixture. Oral equivalent
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doses for both mixtures were not significantly different (<0.5 -fold difference) when the median
C,s value was used instead of the “worst case scenario” to replace missing values. However, oral
equivalent dose was remarkably shifted for both mixtures (>1.2 -fold change) when EC ;¢ values
were weighed according to the relative proportion of the chemical in the mixture. Still, the
relationship based on the oral equivalent dose was the same in all scenarios; the chlorinated
pesticide mixture was more toxic than the current use pesticide mixture.

To further interpret the outcome of these experiments in the context of human health risk,
we examined the relationship of the calculated oral dose equivalent with estimated human
exposures to these mixtures. First, we computed a cumulative exposure v alue for each mixture
based on the exposure estimates for each individual chemical obtained from ExpoCast
(Wambaugh, et al., 2013) ,a framework that estimated human exposure potential for 1936
chemicals. Predicted estimates of exposure were available for 35 of the 36 chemicals present in
the current use pesticides mixture, and 6 of the 10 chemicals in the chlorinated pesticide mixture.
To remain conservative, missing values were substituted with  the highest predicted exposure
from Expocast data for a chemical in the respective mixture (see Supplemental Figure 2). N ext,
cumulative exposure for each mixture was computed as t he upper 95™ percentile and compared
to oral equivalent doses for in vitro cytotoxicity (Figure 4) . While human exposure estimates
were lower than oral dose equivalent in vitro cytotoxic doses for both mixtures, a much greater
margin of safety is evident for the chlorinated pesticide mixture than for the current use pesticide
(5-fold or greater vs less than 2 -fold, respectively). This indicates a wider margin of safety for
the chlorinated pesticide mixture than the current-use pesticide mixture.

Relationships between cytotoxicity of pesticide mixtures and genotype
Because the cell lines used in t his study are densely genotyped (1000 Genomes Project

Consortium, et al., 2012), association analysis was performed be tween the quantitative estimates
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of cytotoxicity and genetic variability among 146 individuals included in screening. Genotyping
data was processed as detailed in Methods. Sex, experimental batch and date, population, and the
first ten genotype principal components were included as covariates in multivariate ANCOVA
genome-wide association analysis (Brown, et al., 2012) | a sensitive method  designed for
evaluating a pattern of variation of cytotoxici ty measurements due to genotype . Despite a
relatively small population of 146 cell lines,  a highly suggestive (p<6.5¢*) association was
observed between cytotoxicity of the current use pesticide mixture and a locus on Chrl7 (Figure
Sa) [near the Bonferroni threshold, and genome -wide significant by the criterion of (Dudbridge
and Gusnanto, 2008) ]. The most highly associated SNP (rs1947825) is located in an open
reading frame C170rf54 (Figure S5b). When the cytotoxicity concentration-response patterns for
cells with each of three genotypes for 151947825 were examined (Figure 5c), we found that the
major allele (AA) confers greater sensitivity , with the heterozygous genotype (AT) falling
consistently in the middle across all concentrations.

Next, “pathway” association analysis of gene sets/ontologies  (Schaid et al., 2012) was
performed using ECyo phenotypes and the same compendium of SNPs using the gene set scan
approach, which performs resampling to compute significance of SNPs, genes, and ontologies
(i.e., KEGG) mn a hierarchical manner. For each mixture and ontology, we applied family -wise
error rate (FWER) control using 10,000 resamples, and report in Table 5 all of the ontology
findings with FWER<O. 2 in order to be inclusive . Interestingly, s everal metabolism pathways
were significantly associated with cytotoxicity response to the chlorinated pesticide mixture. The
top contributing genes within each of those pathways were mainly from the uridine diphosphate
glucuronosyltransferases (UGT) family. UGT genes are highly polymorphic in humans and play
an important role in metabolism of various drugs and xenobiotics, including pesticides (Burchell,

2003).
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DISCUSSION

Following the advice from the U.S. National Academies on developing a long -range
strategic plan to update and advance the way environmental agents are tested for toxicity
(Krewski et al., 2011) , substantial advancements in high -throughput approaches to characterize
the biological activity tha t may be indicative of potential human health hazard of environmental
chemicals in vitro have been implemented (Collins et al., 2008) . Nonetheless, difficulties are
many in conducting human health risk assessments from in vitro endpoints (Crump et al., 2010;
Judsonetal.,2011) . A major challenge in human health assessments is developing a
comprehensive understanding of population variabilit y in susceptibility to chemical toxicity
(Zeise, et al., 2013). Regulatory risk assessment incorporates multiple uncertainty factors that are
based on default assumptions and only recently experimental approaches have become available
to provide scientific data to replace defaults in inter -individual variability in toxicokinetics
(Wetmore et al., 2014) and toxicodynamics (Abdo, et al., 2015).

Furthermore, no clear framework has been set to evaluate potential toxicity of chemical
mixtures in non -animal alternative models. Few environmental chemical mixtures have been
evaluated, especially at environmentally relevant concentrations  (Carvalho et al., 2014) , with
regulatory decisions primari ly based on a single compound evaluation. However, potentiation
and synergistic interactions of chemicals in mixtures is of great concern  (Cedergreen, 2014). It
has been shown that exposure to chemical mixtures, including pesticides, often occurs with each
chemical in the mixture present at respective safety limit co ncentrations (Carvalho, et al., 2014).
Moreover, evaluation of chemical mixtures with similar modes of action, without consideration
of realistic exposure in the environment, might underestimate the toxicological risk associated

with their exposure (Hadrup, 2014).
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To address the challenges of assessment of potential hazard of complex mixtures while
accounting for potential inter -individual variability, we aimed to provide quantitative measures
for population-based in vitro toxicity of pesticide mixtures. We also used a reverse dosimetry
approach to translate in vifro cytotoxicity estimates to oral equivalent d oses and compared those
to estimates of human exposure (Wetmore et al., 2012) . Although investigation of population
variability in toxicity of hundreds of individual chemicals is ongoing (Abdo, et al.,, 2015; Lock,
etal., 2012) , to our knowledge this study is first to examine inter -individual variability in
response to mixtures.

This screening approach showed that both pesticide mixtures that were tested exhibited
appreciable inter -individual variation in cytotoxicity. Interestingly , the toxicodynamic
uncertainty factor for both pesticide mixtures (3.0 and 3.05) derived from the population
variability in our present study was similar to the median inter -individual variability for the 179
individual chemicals previously tested. This finding is consistent with the default uncertainty
factor for toxicodynamic difference among humans (10°°) that is used in risk assessments when
no chemical -specific data are available (World Health Organization, 2005) . On average, there
was no significant difference between the in vitro cytotoxicity concentrations (i.e., ECy) of the
current use pesticide mixture and the chlorinated pesticide mixture. However,  incorporation of
dosimetry with the in vitro data and conversion to an oral equivalent dose for each mixture
revealed that a significantly lower dose of  a chlorinated pesticide mixture would lead to an
internal concentration equal to the cyto toxicity-eliciting EC1o. Conversion of the in vifro data in
this manner allows a risk -relevant ranking of the mixtures that conside rs chemical
pharmacokinetic behavior along with additional exposure data to adjust the potencies.

Incorporation of human dosimetry and predicted human exposure 1s nec essary for greater
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confidence in the “presumed hazard” from in vitro high throughput screening alone (Gangwal et
al., 2012).

It 1s not surprising that the cumulative human predicted exposure limit is much higher for
the current -use pesticide mixture compared to the chlorinated pesti  cide mixture, which mostly
consisted of pesticides withdrawn from the market . The current -use pesticide mixture included
36 currently used pesticides and mimicked real exposure levels in Eastern North Carolina, with
atrazine pesticides being the most abund ant. Atrazine is among the highest used (64-80 million
pounds annually in the United States ) agricultural pesticides (Barr et al., 2007) . Therefore, the
predicted exposure limit for the current-use pesticide mixture was expected to be high, and in our
case it was very close to the calculated cytotoxic oral equivalent dose.

In addition to demonstrating how an in vitro human population-based model system may
be used to evaluate potential hazard of complex mixtures, we also took advantage of the
availability of genetic information on the cells to evaluate genotype-phenotype associations.
Recognizing the genetic underpinning of cytotoxicity may offer valuable insights into the
underlying casual physiolog ical variation and biologically -associated pathways. The significant
locus (C1701f54) identified in this study is in a presumably non -coding genomic region,
consistent with 90% of the significant findings from human GWAS studies to date (Fraser,
2013). The long intergenic non -protein coding RNA 469 resides in the region. A critical role of
non-coding RNAs in response to carcinogen and toxicant exposure 1s an emerging area of

investigation in toxicology ~ (Marrone et al., 2014) and a potential relationship ~ between

cytotoxicity of the current use pesticide mixture and the long non-coding RNA remains to be
explored.

The pathway analys es of genetic variability revealed  that polymorphisms in UGT

metabolizing enzymes are significantly associated with inter-individual variability in cytotoxicity

19

EELI_0001430



O ~I O U W N e

A YY) U1 U1 U1 U1 U1 U1 U1 U1 OO s s s s B B B D D DWW W W WW W W W NN NDNDNDNDNDN R R R e e e e b e e
s W OWo-I U WNEF O WOWw-=-1I0UEWNEFE OWOWw--I"NnOUdWwNF OWOW-=-1IO0"NUWNEF OWOW--JNUu b whk- Ow

for the chlorinated pesticide mixture. UGTs metabolize pesticides and other xenobiotics to less-
toxic water-soluble glucuronides and facilitate their excretion in bile and urine (Burchell, 2003;
Meech et al,, 2012) . This finding is also noteworthy because UGT enzymes are genetically
polymorphic, with more than 200  human alleles identified to date  (Stingl et al., 2014)
Polymorphisms in UGT1 and UGT2 families can alter enzymatic role, cellular processes, or gene
expression, thereby possibly affecting individual ~ cell’s cytotoxic response. The majority of
xenobiotics are metabolized mainly by UGT 1A1, 1A3, 1A4, 1A9 and 2B7 (Stingl, et al., 2014),
which were the top ten significant genes associated with the cytotoxicity of th ¢ chlorinated
pesticide mixture. This finding suggests that variation in the genes coding for these enzymes
may be particularly relevant in metabolizing chlorinated pesticides.

There are a number of limitations to extrapolating from  in vitro toxicity profiling using
lymphoblasts to humans, including severe limitations in metabolic capacity of these cells , acute
nature of exposure, questions about target organ adverse effects, and no opportunity to consider
other important variables such as age, lifestyle factors and diet. It 1s also yet to be established
how chemicals may interact with one another in mixtures, bo th in terms of pharmacokinetics and
in terms of toxicity ; the assumptions made in our work with regards to reverse  dosimetry and
treatment of missing values may constrain the interpretation of the data presented in this work
There remains a pressing need to screen individual pesticides , in addition to their mixtures, in
order to test these assumptions. These limitations notwithstanding, our work highlights the value
of a population-based in vifro survey combined with assessment of oral equivalents and human
exposures for pesticides and other chemicals. These experiments advance our understanding of

the genetic underpinnings of susceptibility-related regulatory networks in response to toxicants.
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Table 1. Human populations from which lymphoblast cell lines were selected for this study.

Population # of Cell lines screened % of Total N males N females
CEU: Utah residents with Northern & 47 322 24 73
Western European ancestry
YRI: Yoruban in Ibadan, Nigeria 40 274 19 21
TSI: Tuscan in Italy 32 21.9 16 16
GBR: British from England & Scotland 27 18.5 14 13
Total 146 100 73 73
Table 2. Chemicals contained in the chlorinated pesticide mixture.
Constituent name MW Constituent CAS# pginimL pMinl1mL % in imL
o-Benzene hexachloride (BHC) 290.8 319-84-6 107 0.368 5.60
-Benzene hexachloride (BHC) 290.8 319-85-7 55 0.189 2.88
v-Benzene hexachloride (Lindane) 290.8 58-899/55963-79-6 151 0.519 7.90
5-Benzene hexachloride (BHC) 290.8 319-86-8 41 0.141 2.15
cis-Chlordane 409.8 5103-71-9 18 0.044 0.67
trans-Chlordane 409.8 5103-74-2 15 0.037 0.56
4,4-DDD (Dichlorodiphenyldichloro 3201 79-54-8 293 0915 13.94
ethane)
4,4-DDE (Dichlorodiphenyldichloro 318.0 79-55-9 1,193 375 5711
cthylene)
4,4-DDT (dichlorodiphenyltrichloro 3545 50-293 176 0496 756
ethane)
Dieldrin 380.9 60-57-1 41 0.108 1.64
Cumulative concentration 2090 6.57 100
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Table 3. Chemicals contained in the current use pesticide mixture.

Constituent name MW Constituent CAS# pginImLk pMin1mL % in 1mL
Metolachlor 283.8 94449-58-8/51218-45-2 115 0.405 22.77
2,6-Diethylaniline 149.2 579-66-8 1,259 8.44 19.76
Molinate 187.3 2212-67-1 139 0.742 19.45
Tebuthiuron 2283 34014-18-1 65 0.285 14.74
Trifluralin 335.5 1582-09-8/75635-23-3 78 0.232 2.40
Chlorothalonil 2659 1897-45-6 29 0.109 2.00
Prometon 2253 1610-18-0 74 0.328 1.42
Butylate 2174 2008-41-5 193 0.888 1.35
Benfluralin 3353 1861-40-1 76 0.227 1.31
Alachlor 269.8 15972-60-8 37 0.137 1.23
Ethoprop 2423 13194-48-4 45 0.186 1.09
Desisopropyl atrazine 173.6 1007-28-9 1,271 7.32 1.04
Metribuzin 2143 21087-64-9 98 0.457 0.89
Diazinon 304.4 333-41-5 89 0.292 0.79
Disulfoton 274 4 298-04-4 26 0.095 0.77
Aldicarb 190.3 116-06-3 92 0.484 0.74
Methyl parathion 263.2 298-00-0 36 0.137 0.66
Ethalfluralin 3333 55283-68-6 82 0.246 0.63
Pebulate (Tilliam) 203 .4 1114-71-2 56 0.275 0.61
Cyanazine 240.7 21725-46-2/11096-88-1 31 0.129 0.55
Permethrin 3913 52645-53-1 39 0.1 0.52
Carbofuran 2213 1563-66-2 85 0.384 0.50
Chlorpyrifos (Dursban) 350.6 2921-88-2 71 0.202 0.48
Prometryne 2414  7287-19-6/83653-07-0 42 0.174 047
Carbaryl 201.2 63-25-2 106 0.527 0.39
Desethyl atrazine 187.6 6190-65-4 1,352 7.21 0.37
Flumetralin 421.7 62924-70-3 81 0.192 0.37
Dacthal 332 65862-98-8/1861-32-1 15 0.045 0.37
Atrazine 215.7 1912-24-9 1,178 5.46 0.35
Simazine 201.7 122-34-9 101 0.501 0.35
Terbufos 288.4 13071-79-9 42 0.146 0.35
Fonofos (Dyfonate) 2463 944-22-9 32 0.13 0.32
Pendimethalin 281.3 40487-42-1 33 0.117 0.29
Fenamiphos 3034 22224-92-6 54 0.178 0.27
Tribufos (DEF 6) 3145 78-48-8 41 0.13 0.26
Napropamide 271.4 15299-99-7 37 0.136 0.12
Cumulative concentration 7200 37.0 100
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Table 4. Summary statistics for the range in ECo values for each mixture.

Pesticide mixture Mean* STD® Range Median Qs Q.s* UFd*
Chlorinated pesticides 11.6 1.96 (0.180-40.6) 13.1 4.36 217 3.00
Current use pesticides 11.1 1.85 (0.649-39.9) 11.9 3.89 247  3.05

* All values (except for UFd column) are in uM.

* The standard deviation of the mean ECy,

* The value corresponding to the 5t percentile of ECyg across 146 averaged values for each mixture.

® The value corresponding the 95™ percentile of EC,, across 146 averaged values for each mixture.

*The population toxicodynamic uncertainty factor [10“®°~%%] for each mixture.

Table 5. Significant and suggestive (FWER P-value <0.2) EC;o —gene set associations.

N of Adjusted
Mixture Gene set Gene set name n p-value Top genes in the gene set

8ENES  FWER)
Chlorinated KEGG Ascorbate and aldarate 2 0.009 UGT2B11, UGT2B7, UGT1A3, UGT1A7,
pesticides metabolism ' UGT1A4, UGT1AS, UGTIAG6
Chlorinated KEGG Starch and sucrose 48 0.034 UGT2B11, UGT2B7, UGT1A3, UGT1A7,
pesticides metabolism ' UGT1A4, UGT1AS, UGT1A6
Chlorinated KEGG Porphyrin and 39 0.06 EARS2, UGT2B11, UGT2B7, BLVRA,
pesticides chlorophyll metabolism ’ UGT1A3, UGT1A7, UGT1A4
Chlorinated KEGG Pentose and glucuronate 3 0.08 UGT2B11, UGT2B7, UGT1A3, UGT1A7,
pesticides interconversions ' UGT1A4, UGT1AS, UGT1A6
Sﬂﬁiﬁﬁiﬁed KEGG  Nitrogen metabolism 23 008 CA6, GLUL, CA2, CA4, HALCTH, CASA
Chlorinated o DDB2, CCNE2, CHEK1, TP73, CDS2,
pesticides KEGG p53 signaling pathway 68 0.185 SFN., SERPINEI
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Figure 1. Inter-individual and population variability and reproducibility of the cytotoxicity

of pesticide -containing mixtures in human lymphoblast cell lines

concentration response was modeled using

. (A) A population

invitro cytotoxicity of the chlorinated pesticide

mixture (top) and the current use pesticide mixture ( bottom). Logistic dose—response modeling

was applied to each individual cell line, with individual data shown by thin gray lines. Bars

represent a histogram of the individual ECy¢ values, and the dashed curve represents the fit of the

logistic model to the pooled data.

within-batch replicate plates for

current use pesticide mixture ( bottom). Spearman and Pearson’s correlation

shown.

cell lines
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(B) Intra-experimental reproducibility of EC;¢ values for
for the chlorinated pesticide mixture ( top) and the

coefficients are
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Figure 2. Distribution of EC 1¢s across 146 cell lines for each mixture. (A) A density plot for

the distribution and mean of EC 1o of each pesticide mixture (red: chlorinated pesticide mixture

2

blue: current use pesticide mixture) across 146 cell lines. (B) Box plots (box represents first and

third quartiles; vertical line inside the box, the median; whiskers are the 1.5 inter-quantile range;

circles are outliers with >1.5 IQR above minimum or maximum).
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Figure 3. Comparative analysis of the mixtures. (A) Scatter plot comparison of ECy, values of

each cell line between pesticide mixtures. Symbols represent populations as shown in the inset .

Pearson and Spearman correlations are

also shown. (B) Scatter plotof 1 * and 3™ principal

components of the molecular descriptors of the individual chemicals in each  pesticide mixture.

(C) Frequency histogram of 15

931 pair-wise correlation values (Spearman) among 179

chemicals screened in (Abdo, et al., 2015). The green dashed line represents a median p value for

all correlations, and the red da shed line represents pairwise correlation of pesticide mixtures

Blue shading represents non-significant correlations after correction for false discoveries.
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Figure 4. [In vitro -to-in vivo extrapolation of cytotoxicity EC 1o values. Box plots (box
represents first and third quartiles; horizontal line inside the box is the median; whiskers are the
1.5 inter-quantile range; circles are outliers with >1.5 IQR above minimum or maximum ) of the
cumulative oral doses for each pesticide mixture ( red: chlorinated pesticide mixture, blue:
current use p esticide mixture) across 146 cell lines  in four different scenarios  for handling
missing data , w eighted by chemical percentage in  the mixture or not (“equi-weighted”), and
assuming the “worst case scenario” (WCS) vs median for missing values. Red and blue dotted
horizontal lines indicate the estimated cumulative human oral exposure levels to each pesticide

mixture.
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Figure 5. Genome-wide association analysis of population variability in cytotoxicity of th e
current u se pesticide mixture. (A) Manhattan plot of MAGWAS  -logl0(p) vs. genomic

position for association of genotype and cytotoxicity to current use pesticide mixture. The dashed
blue line indicates suggestive association (expected once per genome scan). A LocusZoom plot
of the most significant  (P=6.5x10"") region at SNP rs1947825. (B) Average concentration -
response profiles of cytotoxicity of current  use pesticide mixture plotted separately for each

genotype at rs1947825.
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“ Non metabolic (20-50 yrs) ; steady-state blood
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o
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! "y,
b

e

Current-use pesticide
mixture: .
31 out of 36 chemicals out of 10 chemical

. -

B —

. ‘

* Oral equivalent (OE) doses were

~~{W$;gm for each calculated for each scenario using
reverse dosimetry from the upper

g g5t 9% Css value:

Weighted by % of * OE was calculated for each cell

diemicil o 1l line-chemical pair.

PR A cumulatlye OE was computeq
| weight for each » for each mixture for each cell line.
. chemical

Supplemental Figure 1. Workflow diagram for calculations of o ral equivalent doses for

pesticide mixtures used in this study . Chemical specific steady -state values were obtained as

previously described in (Wetmore, et al., 2012).
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Chemical specific
predicted exposure

g Current-use pesticide
| mixture:
| 35 out of 36 chemicals

s ST e

* Missing values were replaced by the highest predicted exposure within each
mixture

* A cumulative predictive exposure was computed for each mixture from the
upper 95% %,

Supplemental Figure 2. Workflow diagram for calculations of predicted exposure levels for

pesticide mixtures used in this study . Chemical specific predicted exposure was obtained as

previously described in (Wambaugh, et al., 2013).
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Supplemental Figure 3. Boxplots of inre-population differences in cytotoxicity of pesticide

mixtures. Box plots (box represents first and third quartiles; horizontal line inside the box is the

median; whiskers are the 1.5 inter

-quantile range; circles are outliers with >1.5 IQR

above

minimum or maximum) of the EC;o values (red: chlorinated pesticide mixture, blue: current use

pesticide mixture) across cell lines separated by population. ANOVA p-values for population

differences are shown in the inset.
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